

BIOLOGICAL AND BIOCHEMICAL PRODUCTION OF ENANTIOPURE L-PIPERAZIC ACID

Hu, Yifei, Van Dyke-Blodgett, Joshua

Richards, Jennifer

T-017073

Background:

Compounds containing piperazic acid (Piz), a nonproteinogenic amino acid, are of significant interest for drug discovery. Peptidic compounds incorporating Piz as a building block include antibacterial, antiviral, immunomodulatory and anticancer drug leads, and all naturally-occurring Piz containing compounds discovered thus far are bioactive. Thus, synthetic chemists are attracted to L-Piz for incorporation into drug-like compounds, molecular probes, etc. However, L-Piz is very expensive to produce.

Technology Description:

Researchers at Washington University have developed a method to perform green biocatalysis of L-Piz *in vitro* and *in vivo*. Green biocatalysis of L-Piz *in vitro* uses a coupled enzyme assay and the inexpensive feedstock, enantiopure L-Ornithine. This method can also be used to create heavy isotope-labelled Piz, which are valuable tools for mass spectrometric and NMR based studies. Furthermore, researchers have also demonstrated L-Piz fermentation in a heterologous, genetically engineered host grown on standard lab media. The development of these two methods of synthesizing L-Piz allows L-Piz to be produced much more economically.

Key Advantages:

- Less expensive
- Enantiopure product
- “Greener” production of the important building block L-Piz

Publications:

Hu Y, Qi Y, Stumpf SD, D'Alessandro JM, Blodgett JAV., Bioinformatic and functional evaluation of actinobacterial piperazate metabolism. ACS Chem Biol. 2019 Mar 28.

Transgenic microorganisms and synthesis of piperazic acid, piperazic acid containing products, and derivatives thereof (U.S. Patent Application, Publication No. US20190002936)